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Associating neuromotor outcomes at 12 months with wearable 

sensor measures collected during early infancy in rural Guatemala 

Abstract 

Background: Sensi�ve measures to predict neuromotor outcomes from data collected early in 

infancy are lacking. Measures derived from the recordings of infant movement using wearable sensors 

may be a useful new technique. 

Methods: We collected full-day leg movement of 41 infants in rural Guatemala across 3 visits 

between birth and 6 months of age using wearable sensors. Average leg movement rate and fuzzy 

entropy, a measure to describe the complexity of signals, of the leg movements’ peak accelera�on �me 

series and the �me series itself were derived. We tested the three measures for the predictability of 

infants’ developmental outcome, Bayley Scales of Infant and Toddler Development III motor, language, or 

cogni�ve composite score assessed at 12 months of age. We performed quan�le regressions with 

clustered standard errors, accoun�ng for the mul�ple visits for each infant. 

Results: Fuzzy entropy was associated with the motor composite score at the 0.5 quan�les; this 

associa�on was not found for the other two measures. Also, no leg movement characteris�c was 

associated with language or cogni�ve composite scores.  

Conclusion: We propose that the entropy of leg movement associated peak accelera�ons 

calculated from the wearable sensor data collected for a full-day can be considered as one predictor for 

infants’ motor developmental outcome assessed with Bayley Scales of Infant and Toddler Development 

III at 12 months of age. 
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Introduc on 

Timely detec�on of atypical development in infants in low and middle-income countries (LMICs) 

is necessary in order to provide op�mal developmental support. Many programs in lower resource 

se8ngs rely on proxy indicators for development such as growth parameters or on indirect measures 

such as parent-reported developmental concerns. These techniques are indirect measures or not 

sensi�ve very early in infancy. As a result, infants needing interven�on are o9en not iden�fied early; 

consequently, developmental support is not provided or is provided a9er infants have failed to meet 

several developmental milestones. Technologies to support earlier iden�fica�on of atypical development 

would therefore support earlier interven�on and op�mal neurodevelopmental outcomes. 

Wearable sensors are one possible novel tool to serve this purpose. Prior work in high-income 

se8ngs has shown that infant limb movement characteris�cs can be measured using wearable sensors 

and used to iden�fy atypical development. For example, in a sample of infants from the United States of 

America, full-day measurement of limb movement could differen�ate between infants with typical 

development, infants at risk for developmental disability who go on to have good developmental 

outcomes at 24 months, and infants at risk for developmental disability who go on to have poor 

developmental outcomes at 24 months [1]. The scien�fic ra�onale for the use of wearable sensors to 

monitor development in infants is that the tool can provide detailed and quan�ta�ve descrip�ons of 

infants’ behavior observed in natural se8ngs for a long period, across days and months [2]. Limb 

movements are one of the earliest outputs of the developing central nervous system. Objec�vely and 

thoroughly es�mated level of movement control may be useful as a measure to sensi�vely assess 

infants’ development earlier in life than current developmental assessments. 



In addi�on to movement kinema�cs characterized by raw sensor recordings, signatures of the 

�me series from sensor recordings has been proposed as another measure to study human movement 

[3]. Measuring the variability of a �me series by calcula�ng entropy, such as approximate entropy (ApEn) 

or sample entropy (SampEn) is one example [4,5]. To clarify, entropy in this ar�cle refers to the sta�s�cal 

method to measure the complexity of a �me series [6], par�cularly that of a physiological signal such as 

wearable sensor recording of movement or heart rate. Again in high-resource se8ngs, our group has 

used the entropy measure to dis�nguish typically developing infants from infants at risk of 

developmental disabili�es; infants at risk exhibited lower entropy values [7]. The ability to derive 

mul�ple measures (ex. movement rate, peak accelera�on per movement, or entropy of a recording) 

makes the wearable sensors even more aDrac�ve for early iden�fica�on of infants’ atypical 

development. 

In this study, we aDempt to extend these findings from high-resource se8ngs to a lower-

resource se8ng among infants in rural Guatemala. This work builds on our recent work in Guatemala 

showing that wearable sensors can be used with high fidelity to measure age-related changes in limb 

movement characteris�cs in rural Guatemala [8]. The main objec�ve of this ar�cle is to inves�gate the 

associa�on between measures derived from limb wearable sensor data in early infancy and Bayley Scales 

of Infant and Toddler Development, Third Edi�on (BSID-III) composite motor scores at 12 months of age 

in a rural se8ng in Guatemala with high rates of poverty, malnutri�on, and infant morbidity. We 

inves�gate both raw movement characteris�cs (average movement rate and peak accelera�on per leg 

movement) as well as the entropy of the limb accelera�on �me series. While the motor composite score 

of BSID-III was of main interest to relate early motor behaviors to later motor development status, we 

also checked the associa�ons with the cogni�ve and the language composite score respec�vely. The 

ra�onale was that both cogni�ve and linguis�c development have been reported to be associated with 

gross motor skills [9,10]; cogni�ve, language, and motor development are not independent of one 

another. 

Material and methods 

Par cipants and Recruitment Procedures 

Full details of par�cipant recruitment procedures have previously been described as part of our 

ongoing work to support early childhood interven�ons in rural Indigenous communi�es in Guatemala 

[8]. Forty-one Indigenous Maya infants were recruited in Tecpán, Chimaltenango, Guatemala in 

collabora�on with Maya Health Alliance, a primary healthcare organiza�on with a major clinical center in 

the study community. Virtually all inhabitants of Tecpán iden�fy as Indigenous. Inclusion criteria 

included: 1) infant aged 0 to 16 weeks at enrollment; 2) singleton and full-term (> 38 weeks) birth. 

Exclusion criteria were: 1) acute malnutri�on (was�ng); 2) presence of a severe medical illness such as 

congenital heart disease as determined by a Maya Health Alliance clinician. Ins�tu�onal Review Board 

approval was obtained from Maya Health Alliance (WK 2019004), the University of Southern California 

(HS-19-00564), and Children’s Hospital Los Angeles (CHLA-20-00201). 

Apparatus 

Infants wore small, light-weight wearable sensors (Opal Version 2 of APDM Inc., Portland, OR, 

USA; dimension: 43.7 x 39.7 x 13.7 mm; weight < 25 g) on each ankle. Research staff inserted the sensors 

into pockets of custom-made legwarmers (Figure 1). The sensors sampled at 20 Hz. 

 

Figure 1 

Placement of wearable sensors 



 
Note. Wearable sensors (inside a circle) are inserted into custom-made legwarmers and placed on each 

ankle of an infant. 

Wearable Sensor Procedure 

As previously described [8], each infant par�cipated in three visits. Within either the home or 

clinic se8ng, at each visit study staff placed sensors on both ankles of the infant in the morning and then 

asked caregivers to return to typical daily ac�vi�es. The three visits occurred before 6 months of age; 

each visit was separated by 1 month (+/- 1 week). At each visit, sensors recorded tri-axial accelera�ons 

and angular veloci�es associated with the infant’s leg movement from the morning un�l bed�me (~10-

12 hours). Caregivers could remove sensors shortly if needed, such as for bathing ac�vi�es. Sensors were 

removed from the infant at bed�me and were collected on a subsequent day by research staff. 

Measurements 

Average leg movement rate 

Using a movement detec�on algorithm previously developed and validated [11], we counted leg 

movements separately for the le9 and the right leg. The algorithm also es�mated the amount of �me 

infants were asleep (aggrega�on of 5-minute periods where 3 or fewer movements occurred in each 

period). Each movement count was divided by es�mated hours awake to derive leg movement rates per 

hour awake for the le9 and the right leg. The average of the two individual limb measures for each 

infant’s visit was used for further analysis. This was a measure represen�ng the overall amount of leg 

movement of infants when awake and moving. Previous findings reported that the frequency of kicking 

movement was significantly correlated with walking onset in infants with Down syndrome [12] or infants 

born preterm with very low birth weight [13]. Further, delayed walking onset has been reported to be 

associated with a lower level of motor [14], cogni�ve [15], or language development [16] in infants. This 

line of thought led us to hypothesize that the leg movement rate may be posi�vely correlated with the 

neurodevelopmental status of an infant assessed with BSID-III at 12 months, known to be the �me some 

infants start to walk independently or with assistance [17,18]. Consequently, we selected this variable for 

our study. The averaging of the le9 and the right leg measures is supported by our previous findings of 

high correla�ons between the right and le9 legs [11,19] with infants similar to our sample (no known or 

suspected neurological disorders).  

Peak accelera�on per leg movement 

Peak accelera�on per leg movement was iden�fied as the maximum accelera�on magnitude 

during a movement [11]. This was a measure represen�ng the intensity with which infants make 

spontaneous leg movements. A report on infants’ peak accelera�on of arm reaching movement showed 



that those with lower peak accelera�on values also had lower motor scores of BSID-III [2]. We were 

interested in observing a similar rela�onship between the measure from leg movements and BSID-III 

scores. Thus we decided to study this measure. We used each infant’s visit median of peak accelera�on 

per movement �me series to represent the overall level of peak accelera�on in a visit. The average of 

the two limb measures was used as well. 

Fuzzy entropy of peak accelera�on per leg movement 

To measure the variability of infant leg movement intensity, we calculated fuzzy entropy [20] of 

the peak accelera�on per movement �me series. While sample entropy has been used in studying infant 

movement and posture control [7,21] we chose fuzzy entropy for two reasons. First, the approach it 

takes to measure the variability of a �me series is similar to that of sample entropy. Briefly, both types of 

entropy compare vectors or short segments of a �me series to their neighbors and measure the overall 

level of dissimilarity. A low value of sample- or fuzzy entropy would imply that the �me series of interest 

is less variable.  Second, the approach aims to address the limita�on of sample entropy. Sample entropy 

adopts a more stringent criterion in determining the similarity of vectors and their neighbors (a binary 

judgment following a Heaviside func�on with a threshold). Acknowledging that signals are more 

ambiguous, fuzzy entropy uses a more relaxed method to determine the similarity (judgment on a 

gradient scale following a fuzzy func�on with certain parameter values). There are compara�ve studies 

suppor�ng that fuzzy entropy outperforms sample entropy [20,22], and the measure is used in 

calcula�ng the variability of different types of signals such as electromyography [23,24] or gait velocity 

[25] �me series. 

The �me series was prepared by concatena�ng all peak accelera�on per leg movement values. 

We prepared this new �me series instead of using the full recording data because the raw �me series of 

a sensor recording has por�ons that are not movements (e.g. sleeping, being held by parents). This was 

to understand how a specific characteris�c of infant leg movement – peak accelera�on – is represented 

across a full-day recording of infant leg movements. Similar to the average leg movement rate, the 

average of the two entropy values obtained for each leg was used for further analysis. For steps involved 

in calcula�ng fuzzy entropy see Appendix A. We used the embedding dimension (m) of 2 and a tolerance 

(r) of 0.2. Higher entropy values indicated greater variability embedded in the movement peak 

accelera�on �me series and can be interpreted as infants making leg movements of diverse peak 

accelera�ons throughout the recording. 

Bayley Scales of Infant and Toddler Development (BSID-III) 

Study psychologists administered the BSID-III at 12 months of age (11 months 15 days – 13 

months 15 days), assisted by bilingual Spanish/Kaqchikel interpreters when needed. The psychologists 

used a previously translated Spanish/Kaqchikel BSID-III version from our team [26]; however, transla�on 

wasn’t needed since the mother’s par�cipants reported they spoke mainly in Spanish to their children. 

Composite scores for language, cogni�ve, and motor scales were calculated separately. Each composite 

score is standardized to age-matched peers. The composite scores are calculated from the reference 

distribu�ons, which have a mean of 100 and a standard devia�on of 15. The standardiza�on is done by 

comparing the performance of an infant to the reference performance of the age-matched sample of the 

U.S. infants. These data must be interpreted cau�ously given the par�cipant sample is not a sample of 

U.S. infants. Our analyses were focused on the motor composite scores, because measures derived from 

wearable sensors are movement-related. 



Sta s cal Analysis 

To explore if wearable sensor data derived measures collected early in infancy could be 

correlated to developmental status as measured by the BSID-III at 12 months of age, we fiDed quan�le 

regression models with clustered standard errors. The dependent variable of a model was the BSID-III 

composite score (motor / language / cogni�ve). The main independent variable was the average 

movement rate, peak accelera�on per leg movement, or fuzzy entropy value. Change in the main 

independent variable over �me was controlled by including infant age, visit, and independent variable-

visit interac�on terms. We chose to use quan�le regression because of the small sample size and 

considerable varia�on in the dependent variable between subjects. A regular regression model like 

ordinary least squares would have been of limited value, as the model assump�on that the response 

(BSID-III scores) rela�ve to predictors was similarly distributed across the range of observed values was 

unlikely to hold for BSID-III scores which are o9en nonlinearly distributed at the extremes. Quan�le 

regression allowed us to relax this restric�on and make no assump�ons about the behavior of the 

response variable over its en�re distribu�on while s�ll tes�ng shi9s in the distribu�on around the 

median. All analyses were done with the qreg2 func�on in STATA Version 18 [27]. The Machado Santos 

Silva test [28] was used to confirm that the model did not violate assump�ons around the distribu�ons 

of the error terms for quan�le regression. 

Results 

Full sociodemographic, clinical, and growth characteris�cs of this cohort have already been 

described [8]. In brief, of 41 recruited infants 51% were female and 95% of Indigenous Maya ethnicity. 

One infant's BSID-III assessment record was not collected, so 40 infants were included in the final 

analyses. Wearable sensor visits occurred at a median of 63 (IQR 44), 94 (IQR 40), and 129 (IQR 35.5) 

days from birth. The sample median of the motor composite scores assessed by BSID-III was 85 (IQR 12). 

The minimum score was 55 and the maximum was 107. The cogni�ve composite scores had the sample 

median of 105 (IQR 16.25). The language composite scores had the sample median of 97 (IQR 21.5). The 

sample median of the average fuzzy entropy of peak accelera�ons of each following visit was greater 

than its preceding visit (Table 1). 

 

Table 1 

Summary of wearable sensor data derived measures across the visit and BSID-III composite scores.  

 Visit 1 

(M: 63 days) 

Visit 2 

(M: 94 days) 

Visit 3 

(M: 129 days) 

Wearable sensor data derived measures  

Fuzzy entropy 1.25 (0.24) 1.40 (0.26) 1.45 (0.22) 

Peak accelera�on per leg movement 

(m/s^2) 
2.71 (0.37) 2.94 (0.39) 3.03 (0.27) 

Average leg movement rate (mov/hour) 930 (464) 1005 (275) 1040 (431) 

BSID-III composite scores  

Motor 85 (12) 

Cogni�ve 105 (16.25) 

Language 97 (21.5) 

Note. All sensor data derived measures are the average of two limb measurements, and BSID-III scores 

were obtained at 12 months of age. Medians of the measures at each visit (IQRs in parentheses) are 

reported. M: Median age of infants in a visit 



Associa on between fuzzy entropy and motor developmental 

outcomes at 12 months 

Associa�ons between BSID-III composite scores and fuzzy entropy were visually inspected using 

scaDerplots of entropy values versus study visit, stra�fied by BSID-III composite score quar�le. Figure 2 

shows this rela�onship for the motor composite score, sugges�ng a posi�ve associa�on between higher 

BSID-III scores and fuzzy entropy, especially at the second visit (median age: 94 days from birth). In visit 

1, points corresponding to Q1 had the median average fuzzy entropy value of 1.22 (IQR 0.22), while 

those of Q4 had the median value of 1.39 (IQR 0.18). In visit 2, the dis�nc�on between Q1 and Q4 points 

appear to be maintained (median average fuzzy entropy: Q4 = 1.69 [IQR 0.4] vs. Q1 = 1.30 [IQR 0.25]). 

This trend is no longer present in visit 3. Q1 points had the median average fuzzy entropy of 1.45 (IQR 

0.21) while Q4 points had the median of 1.42 (IQR 0.08). Table B1 reports fuzzy entropy per quar�le 

based on other BSID-III composite scores: language and cogni�ve. 

 

Figure 2 

Sca�erplots of infants’ fuzzy entropy values and their motor composite score quar#les across the three 

visits. 

 
Note. Each plot shows the limb-averaged fuzzy entropy values of infants in a visit. A: visit 1, B: visit 2, C: 

visit 3. Their BSID-III motor composite score quar�les are indicated by different symbols. Q1: infants 

below the first quar�le (n=13), Q2: infants between the first and the second quar�les (n=9), Q3: infants 

between the second and the third quar�les (n=12), Q4: infants above the third quar�le (n=6) 

 

This rela�onship was further inves�gated by construc�ng a median quan�le regression model 

for the composite motor score, adjus�ng for study visit, age in days at each visit, and the interac�on 

between the changes in fuzzy entropy measures across each study visit (Table 2). In this model, a 1 unit 

change in limb-averaged fuzzy entropy was associated with a change in median motor composite score 

of 13.78 (95% CI 0.66-26.91, p=0.04). At visits 1 and 2, most quar�les showed posi�ve associa�ons 

between the motor composite score and the average fuzzy entropy. At visit 3, the quar�le trends were 

more heterogenous.  

 



 

Table 2 

Summary of the median regression model inves#ga#ng the associa#on between fuzzy entropy and the 

motor composite score at 12 months. 

Predictors Coefficient 95% C.I. P 

Limb-averaged fuzzy entropy 13.78 0.66 – 26.91 0.040 

Study Visit    

    Visit 1 -- -- -- 

    Visit 2 -6.29 -32.16 – 19.58 0.631 

    Visit 3 15.81 -10.68 – 42.30 0.239 

Visit:Entropy interac#on term    

    Visit 1 -- -- -- 

    Visit 2 2.52 -15.72 – 20.76 0.785 

    Visit 3 -13.76 -33.04 – 5.52 0.160 

Age (days) -8.98e-4 -0.11 – 0.986 0.986 

Observa�ons 118   

Note. Standard errors of the coefficients are adjusted for 40 clusters of infants. 

 

We also checked if fuzzy entropy was associated with other composite scores of BSID-III: 

language or cogni�ve. Visual examina�on (Figure C1 A and B) as well as regression models (Tables D1 

and D2) did not support that fuzzy entropy was a significant predictor of either language or cogni�ve 

scores of infants. 

Average leg movement rate or peak accelera on per movement is not 

associated with developmental outcomes at 12 months 

In contrast to fuzzy entropy, the average leg movement rate did not show a dis�nguishing 

rela�onship with BSID-III motor composite scores. In all three visits, quar�les were not separated by the 

average leg movement rate (Figure 3). Both lower and higher quar�les were associated with lower and 

higher movement rates. In visit 1, points corresponding to Q1 had the median average leg movement 

rate of 822 mov/h (IQR 462), while those of Q4 had the median value of 1048 mov/h (IQR 307). In the 

following visits, the overlap of the two quar�les was consistently observed (median average leg 

movement rate at visit 2: Q4 = 944 mov/h [IQR 109] vs. Q1 = 973 mov/h [IQR 300]; at visit 3: Q4 = 951 

mov/h [IQR 120] vs. Q1 = 1024 mov/h [IQR 585]). Values of quar�les based on other composite scores 

are reported in Table B1. The median regression model fiDed to infants’ motor composite scores using 

the movement rate, visit, and the interac�on of the two reported no significant coefficient a9er 

controlling for the age variability (Table D3). 

 

Figure 3 

Sca�erplots of infants’ leg movement rates and their motor composite score quar#les across the three 

visits. 

 



 
Note. Each plot shows the averaged leg movement rates per hour awake of infants in a visit. A: visit 1, B: 

visit 2, C: visit 3. Their BSID-III motor composite score quar�les are indicated by different symbols. Q1: 

infants below the first quar�le (n=13), Q2: infants between the first and the second quar�les (n=9), Q3: 

infants between the second and the third quar�les (n=12), Q4: infants above the third quar�le (n=6) 

 

Peak accelera�on per leg movement was similar to peak entropy in terms of its associa�on with 

the motor composite score (Figure 4). At visit 1, the median peak accelera�on of Q1 was 2.65 m/s^2 [IQR 

0.36] and that of Q4 was 2.80 m/s^2 [IQR 0.43]. This contrast was observed in visit 2: Q1 = 2.81 m/s^2 

[IQR 0.27] vs. Q4 = 3.07 m/s^2 [IQR 0.32]. However, the median regression fiDed using peak accelera�on 

as one of the predictors for motor composite score reported that it is not a significant predictor (Table 

D6). 

 

Figure 4 

Sca�erplots of infants’ peak accelera#ons of leg movements and their motor composite score quar#les 

across the three visits. 



 
Note. Each plot shows the averaged peak accelera�on per leg movements of infants in a visit. Their BSID-

III motor composite score quar�les are indicated by different symbols. Q1: infants below the first quar�le 

(n=13), Q2: infants between the first and the second quar�les (n=9), Q3: infants between the second and 

the third quar�les (n=12), Q4: infants above the third quar�le (n=6) 

 

We again checked if BSID-III language or cogni�ve composite score was associated with either of 

the two sensor data derived measures. Visual examina�on (Figure C1 C-F) as well as regression models 

(Tables D4, D5, D7 and D8) did not support that either the average leg movement rate per hour awake or 

peak accelera�on per leg movement is a significant predictor of either language or cogni�ve composite 

score for our sample. 

Discussion 

Wearable sensor data can predict motor developmental outcomes of 

infants in rural Guatemala. 

In this study, we aimed to associate and tenta�vely predict the neuromotor outcomes of infants 

in rural Guatemala at 12 months of age using wearable sensor data collected earlier in infancy. Fuzzy 

entropy of peak accelera�ons of leg movements had a significant associa�on with BSID-III motor 

composite score in the median regression model. 

Variability in peak accelera on per movement may be one important 

factor in motor development. 

Understanding from what �me series entropy was calculated is a key to interpre�ng its value 

appropriately [29]. If behavior is expected to be regular across �me (e.g. stride �me in adults [30]), high 

entropy can be interpreted as devia#ng from the norm. In contrast, if behavior is more exploratory and 

expected to vary over �me, high entropy may be a sign of following the track. For example, a study on 

the postural control of infants with developmental delay reported that they showed more rigid and less 

complex paDerns compared to their typically developing peers [31]. Similarly, a higher degree of 

variability in peak accelera�on associated with higher BSID-III motor composite scores in our study may 



be interpreted as infants exploring different movement intensi�es and learning varying propriocep�ve 

feedback. This afferent sensory informa�on may be cri�cal to the development of the brain areas 

relevant to the sensorimotor control. Indeed, the developmental status of the brain is associated with 

the motor development. Infants who showed increased prenatal brain connec�vity among regions 

relevant to motor control also demonstrated higher BSID-III motor scores [32]. Furthermore, con�nued 

brain development a9er birth seems to accompany spontaneous movements and associated sensory 

input. For example, the somatotopy of the infant brains reflected the spindle bursts of dis�nc�ve 

movements [33,34]. Consequently, it could be implied that less sensory input resul�ng from less diverse 

leg movements may delay the development of infants’ somatosensory cortex and slow motor skill 

development. An increase in entropy across visits we observed among some infants of our sample may 

also be represen�ng their con�nued explora�on, and/or influenced by their physical growth. 

Another way to consider this is regarding the role of explora�on in learning. It is hypothesized 

that infants need to explore in order to learn, and repea�ng the same type of movements does not 

support learning new motor skills [35–37]. Rather, infants would benefit from “variable enough” 

spontaneous movements as they may learn spa�al and temporal structures in sensorimotor interac�ons 

[38]. High variability in the peak accelera�on early in life may represent increased explora�on. This may 

be preparing infants with the capacity to learn new motor skills later as reflected by higher motor 

composite scores on the BSID-III. The finding of a similar study done with infants in the United States [7] 

also reported that infants at risk of developmental delay showed significantly lower entropy values 

compared to those of typically developing infants. It was suggested that infants at risk had an insufficient 

amount of explora�on with respect to spontaneous leg movements, resul�ng in not reaching the level to 

learn a new motor skill. 

The fact that the average leg movement rate did not have a significant coefficient in the fiDed 

median regression model may further emphasize that the nature of movements infants make, as 

opposed to the quan�ty alone, has a stronger rela�onship to motor development trajectories. A visual 

inspec�on of the correla�on between the fuzzy entropy and the average leg movement rate revealed 

that there are infants who generated rela�vely low leg movement rates (below 1000 mov/h) at visit 1 

and s�ll scored above-median motor composite scores. While making more movements during hours 

awake can increase the variability among the movements’ peak accelera�ons, it is also true that 

achieving high variability does not require a high movement rate. 

High variability achieved early in life may be a sign of more advanced 

motor development trajectories. 

We speculate that the �ming of achieving high variability in peak accelera�ons of leg 

movements may be important in rela�on to trajectories of motor development. A posi�ve associa�on 

between fuzzy entropy and motor composite score is supported for visit 1 data. Based on the model 

es�ma�on and relevant visual of the fits (Figure 2B), the associa�on may be true for visit 2 data as well. 

At visit 2, the median age of infants was 94 days from birth. The third month is a period with notable 

changes in the coordina�on of leg movements. In a study that observed 20 infants [39], 9.4 weeks (SD: 

2.76 weeks; range: 6-14 weeks) was the reported mean age of onset for stereotypical leg movements. 

Relatedly, at the end of the second month, infants’ writhing movements are replaced by fidgety 

movements. This has been assumed to be arising from the calibra�on of the propriocep�ve system [40]. 

Prechtl [41] viewed this change, along with a set of other changes in smiling, postural control and 

learning, or vision, as a suppor�ng piece for his argument of the con�nuum of neural mechanisms from 

prenatal to postnatal life. In other words, the third month could be the cri�cal �me point when infants’ 

repertoire becomes more variable. Specific to leg movements, Thelen [42] reported based on the 

observa�on of four infants that the high degree of synchrony in the hip and ankle joints started to 



decrease by 2 months and even further decreased between 4 and 6 months of age. Again, around 3 

months of age, infants shi9 from predominately in-phase leg movements (e.g., �me-synchronized hip 

and knee flexion or extension) to more variable movements (e.g., hip flexion with extension). If infants 

typically increase the variability in movement repertoire from 3 months or so, demonstra�ng a higher 

amount of variability even before then may be a sign of ‘being ahead’ in developmental trajectory, 

resul�ng in correspondingly higher motor scores at 12 months of age. On the other hand, the opposite 

may be the case, meaning low entropy of peak accelera�on before 3 months of age possibly influenced 

by malnutri�on [43,44]  is related to slower developmental trajectories. A beDer understanding can be 

achieved by inves�ga�ng the op#mal variability [45,46] in the peak accelera�on �me series by studying a 

large sample of typically developing infants using wearable sensors. 

(No) Rela onship between infants’ leg movement and BSID-III 

language / cogni ve composite score 

We found that the change in infants’ leg movement characteris�cs was not associated with BSID-

III language or cogni�ve composite score. This is opposite to the posi�ve rela�onship between arm 

movement characteris�cs of less than a year-old typically developing infants and their cogni�ve 

development [2,47]. Specifically, Shida-Tokeshi and colleagues [2] reported that infants who made more 

arm reaches had larger increases in language and cogni�ve scores measured by BSID-III composite scores 

across mul�ple visits. Regarding their finding, the authors introduced one argument that infants’ motor 

skills may support the scaffolding of development. Iden�fying the motor skill(s) benefi�ng 

linguis�c/cogni�ve development is at a rudimentary stage. Following this line of thought, our findings 

suggest that infants’ leg movements may not be one of the skills or at least not directly involved in 

providing the scaffolding. Rather, it could be that the variability of the spontaneous movements of the 

upper limb, which will later be involved in reaching and object explora�on, could be a beDer marker for 

linguis�c and cogni�ve development. For example, delays in object explora�on demonstrated at 7 

months of age in preterm infants were associated with poorer cogni�ve outcomes at 24 months [48]. It 

can be speculated that the lack of explora�on is associated with less variable arm movements earlier in 

life. Another possible argument is that making leg movements with varying levels of peak accelera�on 

would promote the general development of the central nervous system [49], enabling earlier onset of 

postural control or independent gait behavior, both reported to be associated with infant language 

[50,51] or cogni�ve development [9]. Nonetheless, the contribu�on may not be any more notable than 

that of other influen�al factors. 

Just as the 3 months of age might be a cri#cal point for motor development, there may be 

analogous �mepoints for language and cogni�ve development of infants and our study design did not 

address this. We only collected motor performance in early infancy and did not have analogous 

measures for cogni�ve / language performance in early infancy. Based on our results, we can speculate 

about a cri�cal period for motor development because we measured movement performance in young 

infants and related this to later outcomes, but we did not measure cogni�ve and language performance 

in young infants in order to relate this to later outcomes. 

Limita ons 

Our finding – a significant associa�on between fuzzy entropy and the developmental outcome – 

needs to be interpreted with cau�on. First of all, BSID-III has not been validated in many different 

languages and cultures, limi�ng the generalizability of our findings. Second, no local references norms 

for the BSID-III are available in our popula�on and therefore we scaled scores using the USA reference 

popula�on. This allowed us to compare standardized scores across �me points and between subjects 



within our sample, but the func�onal meaning of individual BSID-III scores is unclear. Further work to see 

if our findings can be replicated in larger samples and with a more diverse popula�on of infants with 

neurodevelopmental outcomes is needed.  

Conclusion 

We measured the leg movements of infants between 0 – 6 months in rural Guatemala using 

wearable sensors. Then we tried to predict their motor developmental outcome es�mated at 12 months 

of age using the measures we collected earlier. We demonstrated that the variability in the peak 

accelera�on per movement �me series recorded before 4 months of age can be considered as a 

predictor of infants’ motor developmental outcome. Specifically, the variability was measured with fuzzy 

entropy value, and the developmental outcome was assessed with BSID-III motor composite scores. This 

indicates that an early assessment of infants’ motor development can be enhanced using measures of 

wearable sensor data. 
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Appendix A 

Calcula ng fuzzy entropy of a  me-series 

 

For a �me-series � = {����: 1 ≤ � ≤ �}, define a vector 
�� as 

 


�� = {����, ��� + 1�, … , ��� + � − 1�} − �0���, � = 1, … , � − � 

 

with 

�0��� = 1
� � ��� + ��

���

���
 

 

In other words, 
�� is a mean subtracted segment of T. You then calculate ����, the similarity degree 

between 
�� and its neighboring segment 
�� �� = 1, … , � − �, � ! � ≠ �� defined by a fuzzy func�on 

(#). 

 

���� =  #�!���, $� 

 

!��� is the maximum absolute difference of the matching scalar values of 
�� and 
��. In our analysis, we 

set #%!���, $& = '�()*+, -⁄ /0
. Each 
�� will have � − � − 1 values of ����. Average all those similarity 

degree values to get 

 

1���$� = 1
� − � − 1 � ����

2��

���,�3�
 

 

Then calculate the average of 4���$�, 4��$� = �
2�� ∑ 1��2�����  and construct an analogous measure for 


��6�, 4�6��$�.  

 

Finally, es�mate Fuzzy Entropy (FuzzyEn) by the following equa�on: 

 

7899:; ��, $, �� = < 4��$� − < 4�6��$� 

  



Appendix B 

Associa on between sensor measures and BSID-III composite score 

quar le 

Table B1 

Sample median and IQR of variables per BSID-III composite score quar#le 

  
Fuzzy entropy 

Peak accelera�on per leg 

movement (m/s^2) 

Average leg movement 

rate (mov/hour) 

Score Q Visit 1 Visit 2 Visit 3 Visit 1 Visit 2 Visit 3 Visit 1 Visit 2 Visit 3 

Motor 

composite 
1 

1.22 

(0.22) 

1.30 

(0.25) 

1.45 

(0.21) 

2.65 

(0.36) 

2.81 

(0.27) 

3.05 

(0.17) 

822 

(462) 

973 

(300) 

1024 

(585) 

2 
1.24 

(0.20) 

1.40 

(0.15) 

1.45 

(0.43) 

2.72 

(0.36) 

2.90 

(0.46) 

2.99 

(0.10) 

947 

(305) 

1095 

(177) 

1068 

(402) 

3 
1.22 

(0.23) 

1.45 

(0.17) 

1.48 

(0.17) 

2.68 

(0.37) 

2.97 

(0.34) 

3.16 

(0.51) 

836 

(445) 

1107 

(339) 

1139 

(332) 

4 
1.39 

(0.18) 

1.69 

(0.40) 

1.42 

(0.08) 

2.80 

(0.43) 

3.07 

(0.32) 

2.99 

(0.25) 

1048 

(307) 

944 

(109) 

951 

(120) 

Language 

composite 
1 

1.14 

(0.09) 

1.45 

(0.14) 

1.46 

(0.22) 

2.61 

(0.33) 

2.89 

(0.22) 

3.01 

(0.19) 

794 

(377) 

1068 

(267) 

1044 

(322) 

2 
1.34 

(0.21) 

1.45 

(0.28) 

1.51 

(0.21) 

2.73 

(0.28) 

2.98 

(0.33) 

3.14 

(0.20) 

773 

(292) 

951 

(197) 

1243 

(390) 

3 
1.23 

(0.38) 

1.29 

(0.24) 

1.35 

(0.18) 

2.71 

(0.60) 

3.00 

(0.42) 

2.99 

(0.29) 

1083 

(473) 

1063 

(327) 

937 

(216) 

4 
1.29 

(0.09) 

1.37 

(0.16) 

1.47 

(0.10) 

2.69 

(2.70) 

2.94 

(0.35) 

3.17 

(0.27) 

959 

(496) 

1191 

(395) 

1229 

(442) 

Cogni�ve 

composite 
1 

1.18 

(0.14) 

1.39 

(0.14) 

1.52 

(0.15) 

2.77 

(0.37) 

2.85 

(0.28) 

3.01 

(0.22) 

926 

(428) 

1034 

(264) 

1089 

(534) 

2 
1.24 

(0.21) 

1.40 

(0.32) 

1.44 

(0.24) 

2.65 

(0.18) 

2.99 

(0.41) 

3.06 

(0.20) 

848 

(301) 

1042 

(286) 

1046 

(244) 

3 
1.29 

(0.34) 

1.38 

(0.22) 

1.45 

(0.21) 

2.65 

(0.56) 

2.85 

(0.43) 

2.95 

(0.38) 

1941 

(567) 

933 

(299) 

1241 

(948) 

4 
1.37 

(0.20) 

1.51 

(0.30) 

1.42 

(0.25) 

2.72 

(0.39) 

3.00 

(0.24) 

3.11 

(0.32) 

1014 

(418) 

1038 

(333) 

991 

(213) 

Note. Quar�le medians (IQRs in parentheses) are reported; Q: score quar�les for motor, language or 

cogni�ve composite scores of infants 

  



Appendix C 

Associa ons between sensor variables and quar les based on 

different BSID-III composite scores 

Figure C1 

Boxplots of infants’ sensor measures and their language / cogni#ve composite score quar#les across the 

three visits. 

 
Note. Quar�les are es�mated based on infants’ language (A, C, E) or cogni�ve (B, D, F) composite scores; 

black points are outliers. Avg. FuzzEn: limb averaged fuzzy entropy; Avg. mov rate: limb averaged leg 

movement rate; Avg. pacc: limb averaged peak accelera�on per leg movement  



Appendix D 

Median regression results 

 

Table D1 

Summary of the median regression model inves#ga#ng the associa#on between fuzzy entropy and the 

language composite score at 12 months. 

Predictors Coefficient 95% C.I. P 

Limb-averaged fuzzy entropy 1.31 -15.55 – 18.18 0.88 

Study Visit    

    Visit 1 -- -- -- 

    Visit 2 -5.86 -39.51 – 27.80 0.73 

    Visit 3 10.94 -32.37 – 54.24 0.62 

Visit:Entropy interac#on term    

    Visit 1 -- -- -- 

    Visit 2 -3.24 -27.74 – 21.27 0.79 

    Visit 3 -21.20 -51.95 – 9.56 0.18 

Age (days) 0.28 0.11 – 0.45 0.001 

Observa�ons 118   

Note. Standard errors of the coefficients are adjusted for 40 clusters of infants. 

 

Table D2 

Summary of the median regression model inves#ga#ng the associa#on between fuzzy entropy and the 

cogni#ve composite score at 12 months. 

Predictors Coefficient 95% C.I. P 

Limb-averaged fuzzy entropy 7.99 -12.50 – 28.49 0.77 

Study Visit    

    Visit 1 -- -- -- 

    Visit 2 -0.44 -29.41 – 28.53 0.98 

    Visit 3 19.14 -37.09 – 75.37 0.50 

Visit:Entropy interac#on term    

    Visit 1 -- -- -- 

    Visit 2 -2.10 -23.91 – 19.70 0.85 

    Visit 3 -18.20 -54.12 – 17.72 0.32 

Age (days) 0.05 -0.15 – 0.26 0.61 

Observa�ons 118   

Note. Standard errors of the coefficients are adjusted for 40 clusters of infants. 

 

Table D3 

Summary of the median regression model inves#ga#ng the associa#on between averaged leg movement 

rate and the motor composite score at 12 months. 



Predictors Coefficient 95% C.I. P 

Limb-averaged movement rate 1.66e-16 -0.01 – 0.01 1.00 

Study Visit    

    Visit 1 -- -- -- 

    Visit 2 -8.62 -25.63 – 8.40 0.32 

    Visit 3 2.95e-13 -11.38 – 11.38 1.00 

Visit:movement rate interac#on term    

    Visit 1 -- -- -- 

    Visit 2 0.01 -0.01 – 0.03 0.27 

    Visit 3 -1.91e-16 -0.01 – 0.01 1.00 

Age (days) -9.60e-16 -0.10 – 0.10 1.00 

Observa�ons 118   

Note. Standard errors of the coefficients are adjusted for 40 clusters of infants. 

 

Table D4 

Summary of the median regression model inves#ga#ng the associa#on between average leg movement 

rate and the language composite score at 12 months. 

Predictors Coefficient 95% C.I. P 

Limb-averaged movement rate 1.20e-3 -0.01 – 0.02 0.87 

Study Visit    

    Visit 1 -- -- -- 

    Visit 2 -11.96 -35.80 – 11.87 0.32 

    Visit 3 -17.06 -48.80 – 14.67 0.29 

Visit:movement rate interac#on term    

    Visit 1 -- -- -- 

    Visit 2 2.29e-3 -0.02 – 0.03 0.85 

    Visit 3 -1.32e-3 -0.03 – 0.02 0.92 

Age (days) 0.28 0.07 – 0.50 0.01 

Observa�ons 118   

Note. Standard errors of the coefficients are adjusted for 40 clusters of infants. 

 

Table D5 

Summary of the median regression model inves#ga#ng the associa#on between average leg movement 

rate and the cogni#ve composite score at 12 months. 

Predictors Coefficient 95% C.I. P 

Limb-averaged movement rate 0.00 -0.01 – 0.02 0.41 

Study Visit    

    Visit 1 -- -- -- 

    Visit 2 9.12 -16.33 – 34.57 0.48 

    Visit 3 -3.40 -27.76 – 19.97 0.77 



Visit:movement rate interac#on term    

    Visit 1 -- -- -- 

    Visit 2 -0.01 -0.04 – 0.02 0.51 

    Visit 3 -1.08e-3 -0.02 – 0.02 0.90 

Age (days) 0.04 -0.19 – 0.27 0.74 

Observa�ons 118   

Note. Standard errors of the coefficients are adjusted for 40 clusters of infants. 

 

Table D6 

Summary of the median regression model inves#ga#ng the associa#on between peak accelera#on per 

leg movement and the motor composite score at 12 months. 

Predictors Coefficient 95% C.I. P 

Limb-averaged peak accelera�on -1.02e-12 -8.92 – 8.92 1.00 

Study Visit    

    Visit 1 -- -- -- 

    Visit 2 -19.33 -49.06 – 10.41 0.20 

    Visit 3 -4.74e-12 -28.76 – 28.76 1.00 

Visit:peak accelera#on interac#on term    

    Visit 1 -- -- -- 

    Visit 2 7.08 -3.54 – 17.70 0.19 

    Visit 3 1.60e-12 -9.63 – 9.63 1.00 

Age (days) 2.04e-15 -0.11 – 0.11 1.00 

Observa�ons 118   

Note. Standard errors of the coefficients are adjusted for 40 clusters of infants. 

 

Table D7 

Summary of the median regression model inves#ga#ng the associa#on between peak accelera#on per 

leg movement and the language composite score at 12 months. 

Predictors Coefficient 95% C.I. P 

Limb-averaged peak accelera�on 0.24 -13.82 – 14.30 0.97 

Study Visit    

    Visit 1 -- -- -- 

    Visit 2 -0.82 -45.92 – 44.28 0.97 

    Visit 3 -13.01 -93.13 – 67.11 0.75 

Visit:peak accelera#on interac#on term    

    Visit 1 -- -- -- 

    Visit 2 -3.34 -19.71 – 13.04 0.69 

    Visit 3 -2.43 -28.36 – 23.49 0.85 

Age (days) 0.30 0.12 – 0.49 0.002 

Observa�ons 118   



 

Table D8 

Summary of the median regression model inves#ga#ng the associa#on between peak accelera#on per 

leg movement and the cogni#ve composite score at 12 months. 

Predictors Coefficient 95% C.I. P 

Limb-averaged peak accelera�on -3.79 -22.12 – 14.54 0.68 

Study Visit    

    Visit 1 -- -- -- 

    Visit 2 -1.97 -57.58 – 53.65 0.94 

    Visit 3 -23.06 -76.66 – 30.54 0.40 

Visit:peak accelera#on interac#on term    

    Visit 1 -- -- -- 

    Visit 2 -0.47 -19.86 – 20.81 0.96 

    Visit 3 6.91 -10.86 – 24.69 0.44 

Age (days) 0.07 -0.16 – 0.29 0.58 

Observa�ons 118   
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